Back

ⓘ இலக்கமியல் கணிதம். கணிதவியல் பத்திரிகைக்கு, டிஸ்கிரீட் மேத்தமடிக்ஸ் இதழ் என்பதைக் காண்க. இலக்கமியல் கணிதம் என்பது அடிப்படையில் தொடர்ச்சியாக இல்லாமல் தனிநிலைப் ப ..




இலக்கமியல் கணிதம்
                                     

ⓘ இலக்கமியல் கணிதம்

கணிதவியல் பத்திரிகைக்கு, டிஸ்கிரீட் மேத்தமடிக்ஸ் இதழ் என்பதைக் காண்க.

இலக்கமியல் கணிதம் என்பது அடிப்படையில் தொடர்ச்சியாக இல்லாமல் தனிநிலைப் பண்பு கொண்ட கணிதவியல் அமைப்புகளைப் பற்றிய படிப்பாகும். "மென்மையாக" மாறும் பண்புடைய மெய் எண்களுக்கு மாறாக, முழு எண்கள், வரைபடங்கள் மற்றும் தர்க்கத்திலான கூற்றுகள் போன்ற இலக்கமியல் கணிதத்தில் ஆய்வு செய்யப்படும் பொருள்கள் இவ்விதமாக மென்மையாக மாறாமல் தனித்துவமான தனித்தனி மதிப்புகளைக் கொண்டுள்ளன. ஆகவே இலக்கவியல் கணிதமானது "தொடர் கணிதத்திலிருந்து" நுண்கணிதம் மற்றும் பகுப்பாய்வு போன்ற தலைப்புகளை விலக்கியதாகிறது. இலக்கமியல் பொருள்கள் பெரும்பாலும் முழு எண்களால் எண்ணிடப்படுகின்றன. மேலும் முறையாக, இலக்கமியல் கணிதமானது எண்ணத்தகுந்த கணங்கள் தொடர்பான கணிதவியலின் ஒரு பிரிவாக விவரிக்கப்படுகிறது. இருப்பினும், துரதிருஷ்டவசமாக "இலக்கமியல் கணிதம்" என்ற சொல்லுக்கான துல்லியமான, உலகளவில் ஒப்புக்கொள்ளப்பட்ட வரையறை எதுவும் இல்லை. உண்மையில், எவையெல்லாம் உள்ளடங்கும் என்பதைக் காட்டிலும் எவையெல்லாம் விலக்கப்படுகின்றன என்பதைக் கொண்டே இலக்கமியல் கணிதம் விளக்கப்படுகிறது: தொடர்ந்து மாறும் அளவுகளும் தொடர்புடைய கருத்துக்களும்.

இலக்கமியல் கணிதத்தில் கையாளப்படும் பருப்பொருள்களின் தொகுப்பு வரையறுக்கப்பட்டதாகவோ அல்லது வரையறுக்கப்படாததாகவோ இருக்கலாம். சில நேரங்களில் வரையறுக்கப்பட்ட கணிதம் என்ற சொல்லானது இலக்கமியல் கணிதத்தில் வரையறுக்கப்பட்ட கணங்கள் போன்ற குறிப்பாக வணிகம் தொடர்பான பகுதிகள் போன்ற பிரிவுகளைக் குறிக்கவும் பயன்படுத்தப்படுகின்றது.

இலக்கமியல் கணிதம், கணினி அறிவியலுக்கான அதன் பயன்பாடுகளின் காரணமாக சமீபத்திய ஆண்டுகளில் பிரபலமாகியுள்ளது. படிமுறைத் தீர்வுகள் தனிநிலை பருப்பொருள்களாக இருப்பதால், கணினி அறிவியலுக்கான கணிதவியல் அடித்தளமானது அடிப்படையாக தனிநிலையானதாக உள்ளது. இலக்கமியல் கணிதம் என்பது கணினி அறிவியலின் கணிதவியல் மொழியாகும். இலக்கமியல் கணிதத்தின் கருத்துகள் மற்றும் குறிப்பு முறைகள், கணினி வழிமுறைகள், நிரலாக்க மொழிகள், மறையீட்டியல், தானியக்கத் தேற்ற நிரூபணம் மற்றும் மென்பொருள் உருவாக்கம் போன்ற கணினி அறிவியலின் அனைத்து பிரிவுகளிலும் உள்ள பருப்பொருள்கள் மற்றும் கணக்குகளை ஆய்வு செய்வதிலும் விவரிப்பதிலும் மிகவும் பயனுள்ளவையாகின்றன. மாறாக, இலக்கமியல் கணிதத்திலிருந்து உலகியல் பயன்பாடுகளுக்கு கருத்துகளைப் பயன்படுத்துவதில் கணினி செயல்படுத்தல்கள் முக்கியமானவையாகின்றன.

இலக்கமியல் கணிதத்திலான ஆய்வின் பிரதான பொருள்கள் இலக்கமியல் பொருள்களே எனினும், பல சமயங்களில் தொடர் கணிதவியலின் பகுப்பியல் முறைகளும் பயன்படுத்தப்படுகின்றன. எண்ணியல் கோட்பாடானது குறிப்பாக, இலக்கமியல் மற்றும் தொடர் கணிதவியல் ஆகியவற்றுக்கு இடையேயான ஓர் எல்லைக்குள் அமைகிறது, வரையறுக்கப்பட்ட இடத்தியல் சேர்வியல் மற்றும் இடத்தியல் ஆகியவற்றின் இடைவெட்டுச்சந்திப்பு இருப்பதும் இது போன்றதே ஆகும்.

                                     

1. பெருஞ்சவால்கள், கடந்தகாலம் மற்றும் தற்காலம்

இலக்கமியல் கணிதத்தின் வரலாறானது எண்ணற்ற சவாலான சிக்கல்களை உள்ளடக்கியுள்ளது. அவை இந்தத் துறைக்குள்ளான பகுதிகளில் கவனம் செலுத்துபவையாகவுள்ளன. வரைபடக் கோட்பாட்டில், நான்கு வண்ணத் தேற்றத்தை நிரூபிக்கும் முயற்சியாக, அதிக அளவு ஆராய்ச்சிகள் ஊக்குவிக்கப்பட்டன, அதில் முதலாவது 1852 ஆம் ஆண்டில் அறிவிக்கப்பட்டது, ஆனால் அது 1976 ஆம் ஆண்டு வரை கென்னித் ஆப்பெல் Kenneth Appel மற்றும் உல்ஃப்கேங் ஹேகன், போதிய அளவு கணிணி உதவியுடன்) நிரூபிக்கப்படவில்லை.

தர்க்கத்தில், 1900 ஆம் ஆண்டு வெளியிடப்பட்ட டேவிட் ஹில்பெர்ட்டின் திறந்த நிலை கணக்குகளின் பட்டியலில் உள்ள இரண்டாவது கணக்கானது எண் கணிதத்தின் ஒத்துக்கொள்ளப் பெற்ற நிலைப்பேறானவை என்பதை நிரூபிப்பதற்கானவை. 1931 ஆம் ஆண்டு நிரூபிக்கப்பட்ட கர்ட் கோடெலின் இரண்டாவது முழுமையற்றதன்மைத் தேற்றம், இது சாத்தியமற்றது எனக் காண்பித்தது – குறைந்தபட்சம் எண் கணிதத்திற்குள்ளும் இது சாத்தியமற்றது எனக் காண்பித்தது. ஹில்பெர்ட்டின் பத்தாவது கணக்கானது முழு எண் குணகங்களைக் கொண்டுள்ள கொடுக்கப்பட்ட ஒரு பல்லுறுப்புக்கோவைக்கு டயோஃபெண்ட்டைன் சமன்பாடானது முழு எண் தீர்வு உள்ளதா எனத் தீர்மானிப்பதற்கானதாகும். 1970 ஆம் ஆண்டு, யூரி மட்டியாசெவிச் இதைச் செய்ய முடியாது என நிரூபித்தார்.

இரண்டாம் உலகப்போரில் ஜெர்மானிய குறியீடுகளை முறித்துக் கண்டறிவதற்கான அவசியத்தால் மறையீட்டியலிலும் கோட்பாட்டியல் கணினி அறிவியலிலும் முன்னேற்றம் ஏற்பட்டது. அதன் முதல் நிரலாக்கம் செய்யத்தக்க டிஜிட்டல் எலக்ட்ரானிக் கணினி இங்கிலாந்தின் ப்லெட்ச்லி பார்க்கில் உருவாக்கப்பட்டது. அதே நேரத்தில், இராணுவ தேவைகளினால் செய்பணி ஆய்வியல் முன்னேற்றம் ஊக்குவிக்கப்பட்டது. இந்த மறையீட்டியல் முக்கியமானதாக இருந்தது குறித்தே பனிப்போர் நிலவியது, அதனுடன் பப்ளிக்-கீ மறையீட்டியல் போன்ற அடிப்படை முன்னேற்றங்கள் பின்வந்த ஆண்டுகளில் வளர்ந்தன. வணிகம் மற்றும் பணித்திட்ட மேலாண்மை ஆகியவற்றில் செய்பணி ஆய்வியல் முக்கியமான கருவியாக விளங்கியது, அதனுடன் முக்கியப் பாதை முறை critical path method 1950 ஆம் ஆண்டுகளில் உருவாக்கப்பட்டது. தொலைத்தொடர்பு தொழிற்துறையும் இலக்கமியல் கணிதத்திலான முன்னேற்றங்களை ஊக்குவித்தது, குறிப்பாக வரைபடக் கோட்பாட்டிலும் தகவல் கோட்பாட்டிலும் ஊக்குவித்தது. பாதுகாப்பு-அவசியமான அமைப்புகளின் மென்பொருள் உருவாக்கத்திற்கு தர்க்கரீதியிலான கூற்றுகளின் முறையான சரிபார்ப்பு அவசியமானது, மேலும் தானியக்கத் தேற்ற நிரூபணமும் இந்தத் தேவையால் ஊக்குவிக்கப்பட்டது.

தற்போது, கோட்பாட்டியல் கணினி அறிவியலில் மிக பிரபலமான திறந்தநிலை கணக்குகளில் ஒன்று P = NP கணக்காகும், அதில் P மற்றும் NP ஆகிய சிக்கலான தன்மை வகைகள் சம்பந்தப்பட்டுள்ளன. க்ளே மேத்தமட்டிக்ஸ் இன்ஸ்டிடியூட் Clay Mathematics Institute முதல் சரியான நிரூபணத்திற்கு ஒரு மில்லியன் அமெரிக்க டாலர் பரிசை வழங்குவதாக அறிவித்துள்ளது. அதனுடன் பிற கணித சிக்கல்களுக்கு பிற ஆறு பரிசுகளும் அறிவிக்கப்பட்டுள்ளன.

                                     

2.1. இலக்கமியல் கணிதத்திலுள்ள தலைப்புகள் தர்க்கம்

தர்க்கம் என்பது சரியான பகுத்தறிவுத் தன்மை மற்றும் அனுமானிப்பு போன்ற கொள்கைகளையும், அதே போல் நிலைப்பேறுத் தன்மை, உறுதியானத் தன்மை மற்றும் முழுமைத் தன்மை ஆகிய தத்துவங்களின் ஆய்வாகும். எளிய எடுத்துக்காட்டாக, பெரும்பாலான தர்க்க அமைப்புகளில், பியர்சின் விதி P → Q→ P)→ P) மெய்யாகும், மேலும் இதை ஒரு உண்மை அட்டவணையின் மூலம் எளிதாகச் சரிபார்க்க முடியும். கணிதவியல் நிரூபணங்களின் ஆய்வுகள் குறிப்பாக தர்க்கத்தில் முக்கியமானவையாகும், மேலும் தானியக்கத் தேற்ற நிரூபணம் மற்றும் மென்பொருள் உருவாக்கம் ஆகியப் பயன்பாடுகளில் இது பயன்படக்கூடியதுமாகும்.

                                     

2.2. இலக்கமியல் கணிதத்திலுள்ள தலைப்புகள் கணங்கள் கோட்பாடு

கணங்கள் கோட்பாடு என்பது கணிதவியலின் ஒரு பிரிவாகும். அது கணங்களைப் பற்றிய ஆய்வாகும், கணங்கள் என்பவை பல பொருள்கள் சேர்ந்த தொகுப்பாகும். {நீலம், வெள்ளை, சிவப்பு} அல்லது முடிவிலா பகா எண்களின் கணம் போன்றவை கணங்களுக்கான எடுத்துக்காட்டுகளாகும். பகுதியளவு வரிசைப்படுத்தப்பட்ட கணங்களும் பிற தொடர்புகளுடன் கூடிய கணங்களும் பல துறைகளில் பயன்படுகின்றன.

                                     

2.3. இலக்கமியல் கணிதத்திலுள்ள தலைப்புகள் தகவல் கோட்பாடு

தகவல் கோட்பாடானது தகவலின் அளவீடு தொடர்புடையதாகும். செயல்திறன் மிக்க மற்றும் நம்பகமான தரவு கடத்தல் மற்றும் சேமிப்பு முறைகளை உருவாக்கப் பயன்படுத்தும் குறியீட்டுக் கோட்பாடு இதனுடன் நெருங்கியத் தொடர்புடையதாகும்.

                                     

2.4. இலக்கமியல் கணிதத்திலுள்ள தலைப்புகள் எண்ணியல் கோட்பாடு

எண்ணியல் கோட்பாடு பொதுவாக எண்களின், குறிப்பாக முழு எண்களின் பண்புகளுடன் தொடர்புடையதாகும். அது மறையீட்டியல், மறைப்பகுப்பாய்வு மற்றும் க்ரிப்ட்டாலஜி குறிப்பாக பகா எண்கள் மற்றும் பகாப்பண்பு சோதனை ஆகியவற்றில் பயன்மிக்கதாக உள்ளது. பகுமுறை எண்ணியல் கோட்பாட்டில், தொடர் கணிதவியல் முறைகளும் பயன்படுத்தப்படுகின்றன.

                                     

2.5. இலக்கமியல் கணிதத்திலுள்ள தலைப்புகள் சேர்வியல்

சேர்வியல் பருப்பொருள்கள் எவ்வாறு சேர்க்கப்படலாம் அல்லது வரிசையமைக்கப்படலாம் என்பது பற்றி ஆய்வு செய்கிறது, மேலும் வடிவமைப்புக் கோட்பாடு, எண்ணிடு சேர்வியல், எண்ணிக்கை, சேர்வியல் வடிவியல், சேர்வியல் இடவியல் போன்ற தலைப்புகளையும் உள்ளடக்கியதாகும். வரைபடக் கோட்பாடு, நெட்வொர்க்குகளின் ஆய்வாகும். அது சேர்வியலில் முக்கியமான பகுதியாகும், அது பல நடைமுறைப் பயன்பாடுகள் கொண்டதுமாகும்.

பகுமுறை சேர்வியலிலும் இயற்கணித வரைபடக் கோட்பாட்டிலும் தொடர் கணிதத்தின் முறைகள் பயன்படுத்தப்படுகின்றன, அது மட்டுமின்றி இயற்கணித வரைபடக் கோட்பாடு குழுக் கோட்பாட்டுடன் நெருங்கிய தொடர்பும் கொண்டுள்ளது.

                                     

2.6. இலக்கமியல் கணிதத்திலுள்ள தலைப்புகள் கோட்பாட்டியல் கணினி அறிவியல்

கோட்பாட்டியல் கணினி அறிவியலானது கணினி கணக்கியலுடன் தொடர்புடைய இலக்கமியல் கணிதப் பகுதிகளைப் பற்றியதாகும். இது பெரும்பாலும் வரைபடக் கோட்பாடு மற்றும் தர்க்கம் ஆகிய பிரிவுகளை அதிகமாக சார்ந்துள்ளது. கோட்பாட்டியல் கணினி அறிவியலுடன், கணிதவியல் முடிவுகளைக் கணக்கிடுவதற்கான வழிமுறைகளும் உள்ளன. கணக்கிடக்கூடிய தன்மை என்பது தத்துவரீதியாக எதைக் கணக்கிட முடியும் என்பதைப் பற்றியதாகும், மேலும் அது தர்க்கத்துடன் நெருங்கிய தொடர்புள்ளது. சிக்கலான தன்மை என்பது கணக்கீடுகளுக்கு எடுத்துக்கொள்ளப்படும் நேரத்தைப் பற்றியதாகும். தானியக்கக் கோட்பாடும் முறையான மொழிக் கோட்பாடும் கணக்கிடத்தக்க தன்மையுடன் நெருக்கமான தொடர்புடையனவாகும். கணக்கீட்டு வடிவியலானது வடிவியல் கணக்கீடுகளுக்கு படிமுறைத்தீர்வுககளைப் பயன்படுத்துகிறது, கணினி படப் பகுப்பாய்வானது அவற்றைப் படங்களை வழங்கப் பயன்படுத்துகிறது.

                                     

2.7. இலக்கமியல் கணிதத்திலுள்ள தலைப்புகள் செய்பணி ஆய்வியல்

செய்பணி ஆய்வியல் வணிகத்திலும் பிற துறைகளிலும் நடைமுறை சிக்கல்களுக்கான தீர்வுகாணும் உத்திகளை வழங்குகிறது. இலாபத்தை அதிகரிக்க வளங்களை ஒதுக்கீடு செய்தல் அல்லது இடர்பாடுகளைக் குறைக்க பணித்திட்ட செயல்பாடுகளைத் திட்டமிடல் போன்ற சிக்கல்கள் இதிலடங்கும். நேரியல் திட்டமிடல், வரிசைக் கோட்பாடு மற்றும் பிறவற்றின் தொடர் வளர் பட்டியல் ஆகியன செய்பணி ஆய்வியல் நுட்பங்களில் அடங்கும்.

கேம் தியரி, வெற்றியானது மற்றவர்களின் தேர்வைப் பொறுத்ததாக இருப்பதால், சிறந்த செயலைத் தேர்ந்தெடுப்பது மிகவும் சிக்கலானதாக விளங்கும் சூழ்நிலைகளை ஆக்குகிறது.

                                     

2.8. இலக்கமியல் கணிதத்திலுள்ள தலைப்புகள் தனிநிலையாக்கம்

தனிநிலையாக்கம் என்பது, தொடர் மாதிரிகளையும் சமன்பாடுகளையும் தனிநிலை பகுதிகளாக மாற்றுவது தொடர்பானதாகும், பெரும்பாலும் இது தோராயமாக்கலைப் பயன்படுத்தி கணக்கீடை எளிதாக்கும் தேவைக்காக செய்யப்படுகிறது. எண்ணியல் பகுப்பாய்வு ஒரு முக்கியமான எடுத்துக்காட்டை வழங்குகிறது.

                                     

2.9. இலக்கமியல் கணிதத்திலுள்ள தலைப்புகள் தொடர் கணிதவியலின் தனிநிலை ஒத்தபொருள்கள்

தொடர் கணிதவியலில், இலக்கமியல் நுண்கணிதம், இலக்கமியல் நிகழ்தகவு பரவல்கள், இலக்கமியல் ஃபோரியர் நிலைமாற்றங்கள், இலக்கமியல் வடிவியல், இலக்கமியல் மடக்கைகள், இலக்கமியல் வகையீட்டு வடிவியல், இலக்கமியல் புற நுண்கணிதம், இலக்கமியல் மேர்ஸ் கோட்பாடு, வேறுபாடு சமன்பாடுகள் மற்றும் இலக்கமியல் மாற்ற அமைப்புகள் போன்ற இலக்கமியல் வகையைக் கொண்ட பல கருத்துக்கள் உள்ளன.

பயன்படு கணிதவியலில், இலக்கமியல் மாதிரியாக்கம் என்பது தொடர் மாதிரியாக்கத்தின் ஒத்த பொருளாகும். இலக்கமியல் மாதிரியாக்கலில், தரவுகளுக்கு இலக்கமியல் சூத்திரங்கள் பொருந்துகின்றன. திரும்ப நிகழ்தல் தொடர்புகளைப் பயன்படுத்துவது என்பது இந்த வகை மாதிரியாக்கத்திலான ஒரு பொதுவான முறையாகும்.

                                     

2.10. இலக்கமியல் கணிதத்திலுள்ள தலைப்புகள் கலந்துபட்ட மற்றும் தொடர் கணிதவியல்

கால வரிசை நுண்கணிதம் என்பது வேறுபாடு சமன்பாடுகள் கோட்பாட்டையும் வகையீட்டு சமன்பாடுகள் கோட்பாட்டையும் ஒருங்கிணைத்து, இலக்கமியல் மற்றும் தொடர் தரவுகளை ஒரே நேரத்தில் மாதிரியாக்கம் செய்ய வேண்டிய தேவைகளுள்ள துறைகளில் பயன்படுத்துவதாகும்.

                                     

3. கூடுதல் வாசிப்பு

  • ரிச்சர்டு ஜான்சன்பாக், டிஸ்க்ரீட் மேத்தமட்டிக்ஸ் 6 ஆம் பதிப்பு. மாக்மில்லன். ISBN 0-13-045803-1. கம்பேனியன் வெப்சைட்:
  • Klette, R., and A. Rosenfeld 2004. Digital Geometry. Morgan Kaufmann. பன்னாட்டுத் தரப்புத்தக எண்:1-55860-861-3. ஆல்சோ ஆன் டிஜிட்டல் டப்பாலஜி, க்ராஃப் தியரி, காம்பினேட்டரிக்ஸ், ஆக்ஸியோமெட்டிக் சிஸ்டம்ஸ்.
  • கணிதவியல் தேக்கக உள்ளடக்கம், பாடத்திட்டங்கள், பயிற்சிகள், ப்ரோக்ராம்கள் போன்றவற்றுக்கான இலக்கமியல் கணித இணைப்புகள்.
  • நேவில்லி டீன், எசன்ஸ் ஆஃப் டிஸ்க்ரீட் மேத்தமட்டிக்ஸ் ப்ரெண்டைஸ் ஹால். ISBN 0-13-345943-8. மேலே உள்ளது போன்ற விரிவான உரை அல்ல, ஓர் எளிய அறிமுகமே.
  • டொனால்ட் இ. னத், தி ஆர்ட் ஆஃப் கம்ப்யூட்டர் ப்ரோக்ராமிங்
  • ஜிர்ரி மட்டாசெக் & ஜரோஸ்லாவ் நெசாட்ரில், Introduction aux mathematiques discretes
  • நார்மன் எல். பிக்ஸ், டிஸ்க்ரீட் மேத்தமட்டிக்ஸ் 2 ஆம் பதிப்பு. ஆக்ஸ்போர்டு யுனிவர்சிட்டி பிரஸ். ISBN 0-19-850717-8. கம்பேனியன் வெப்சைட்: கேள்விகளும் அவற்றுக்கான தீர்வுகளும் உள்ளது.
  • ரொனால்டு க்ராம், டொனால்ட் ஈ. னத், ஓரன் பட்டாஷ்னிக், கான்க்ரீட் மேத்தமட்டிக்ஸ்
  • ரால்ஃப் பி. க்ரிமால்டி, டிஸ்க்ரீட் அண்ட் காம்பினேட்டோரியல் மேத்தமட்டிக்ஸ்: என் அப்ளைடு இண்ட்ரடக்ஷன் 5ஆம் பதிப்பு. அடிசன் -வெஸ்லி ISBN 0-201-72634-3
  • கென்னித் எச். ரோசன், ஹேண்ட்புக் ஆஃப் டிஸ்க்ரீட் அண்ட் காம்பினேட்டோரியல் மேத்தமட்டிக்ஸ் CRC ப்ரஸ். ISBN 0-8493-0149-1.
  • சி.எல். லியூ, எலிமெண்ட்ஸ் ஆஃப் டிஸ்க்ரீட் மேத்
  • கெனித் எச். ரோசன், டிஸ்க்ரீட் மேத்தமட்டிக்ஸ் அண்ட் இட்ஸ் அப்ளிகேஷன்ஸ் 6ஆம் பதிப்பு. மெக்ராவ் ஹில். 0-07-288008-2. கம்பேனியன் வெப்சைட்


                                     
  • க ட ப ட ட ல கண தம ற அட க க ள யல க க ற வழ வ ளக கப பட க றத இக க ட ப ட கண தம ப ள ள ய யல ச ட ட ட டம அற வ யல க ற ப ப க, இயற ப யல ச யற க ந ண மத எந த ரப
  • வ ர வ ஃப ர ய உர ம ற றம FFT என பத இலக கம யல ஃப ர ய உர ம ற றத த ய ம DFT அதன தல க ழ ய ய ம கணக க ட வதற க ன ச யல த றன ம க க வழ ம ற ய க ம பல வ ற
  • க ட ப ட Representation theory கணக க ட ப ட இடவ யல ம க க ணவ யல அளவ யல ப ள ள ய யல ப ர வ கள Pure பயன ப ட இலக கம யல Computational கண தம வல வ சல
  • வ ளங கவ த தல அல லத வ வர த தல மற ற ம தரவ கள அள த தல ப ன றவ அடங க ய கண தம ச ர ந த அற வ யல க ச லர கர த க ற ர கள மற ற ம ச லர அதன தரவ கள ச கர த த
  • க ட ப ட Representation theory கணக க ட ப ட இடவ யல ம க க ணவ யல அளவ யல ப ள ள ய யல ப ர வ கள Pure பயன ப ட இலக கம யல Computational கண தம வல வ சல
  • க ட ப ட Representation theory கணக க ட ப ட இடவ யல ம க க ணவ யல அளவ யல ப ள ள ய யல ப ர வ கள Pure பயன ப ட இலக கம யல Computational கண தம வல வ சல
  • க ட ப ட Representation theory கணக க ட ப ட இடவ யல ம க க ணவ யல அளவ யல ப ள ள ய யல ப ர வ கள Pure பயன ப ட இலக கம யல Computational கண தம வல வ சல
  • க ட ப ட Representation theory கணக க ட ப ட இடவ யல ம க க ணவ யல அளவ யல ப ள ள ய யல ப ர வ கள Pure பயன ப ட இலக கம யல Computational கண தம வல வ சல
  • கண ட ப ட ப ப கள க க க 2012 எந த ர ச ம ர ட அங க ர ய அம ர க கர ஐக க ய அம ர க க இலக கம யல கண தம க ள க ம ற க கண ன ய யல ல அட ப பட ப பங கள ப ப கள க க கவ ம க ட டல

Users also searched:

...